Case Study: Leveraging Industry Standards for Enterprise Information Management, supporting Semantic Integration on Smart Grid projects at Long Island Power Authority (LIPA)

Predrag Vujovic, Phillip Jones, Stipe Fustar, Fran Clark
Overview

• Real-life Case Study of how LIPA are implementing Semantic Integration in their Smart Grid Program.

• Our Story:
 – LIPA Smart Grid Business Drivers (Why?)
 – Target Architecture and Enablers (What?)
 – Semantic Integration Approach (How?)
LIPA Business Drivers Related to IT

• “Near Plug and Play”, Flexibility, Agility & Portability
 – Avoid vendor- and technology lock-in’s
 – Multiple Service Providers
 – “Best of Breed” Applications
 – Single Data Source & Multiple Users
 – Stable Enterprise Data Model & Flexibility of Business Intelligence Options
 – Open to new technology, solutions, applications
 • the key to leveraging investment in Smart Grid infrastructure and many new players

• Lower Life Cycle Cost
 – Less expensive “repetitive” integration of SPs and critical systems
 – Interoperability for lower cost of both Implementation and Maintenance
 – Shorter, Predictable Time to Deliver
 – Availability or competitive services by avoiding “proprietary” solutions
LIPA Integration & Standards History

• LIPA started pilot projects in utilizing industry standards for interoperability of systems in 2000

• LIPA Recognized the need for an innovative model-driven approach in 2007

• LIPA’s New Model-Driven Approach:
 – Enables semantic integration through the use of a common semantic model
 – Supports “automated” maintenance, testing, and updates of enterprise data model across company systems
Projects Track Record

• The LIPA Model-Driven Semantic Integration approach has consistently performed under budget and on time under extremely complex and trying conditions.

• Trend of reduced cost and improved delivery speed is based on:
 – Use of tools for “automated/integrated” development, testing, implementation, and maintenance of the model
 – Model-re-use in new and replacement projects
 – Reuse of data and interfaces across company systems and SOA
Projects Track Record

• Projects completed & in-flight include:
 – Energy Trading
 – Customer Outage Communication (Web Outage Map)
 – Customer Outage Communication (Text Messaging)
 – Meter Data Management (in progress)
 – Outage Management (OMS – in progress)
 – Customer Consumption Data integration
Key Elements of LIPA Semantic Integration

• Centrally Managed Semantic (Data) Model
 – Heterogeneous interfaces mediated through common model
 – Based on industry standards (IEC CIM)

• Centrally Managed Semantic Mapping and Business Rules
 – Integrate & Reuse Business Rules, transformations, mappings
 – Automate gap analysis, documentation

• Centrally Managed Development and Run-Time Deployment
 – Generate ready-to-go SOA services
 – Continuous testing
 – Deploy into any runtime environment
 – Automate impact analysis on change
Semantic Integration Value Proposition

• Make all run-time interoperability decisions at semantic layer
 – Configuration rather than coding
 • Automate implementation
 – Simplified testing
 • Test mappings, transformation and business rules using design-time tool (DXSI)
 – Effective maintenance and updates!!!
LIPA ESM and Integration Concept

Enterprise Semantic Model & Exchange Model (Mapping)

Open Standards

Application Information

Process Integration

BPM/Workflow

Business Intelligence

Enterprise Integration Platforms

Applications Metadata

GET IN THE FLOW

http://www.distributech.com
LIPA EDM Workflow: “Lossless” Metadata

The Information Architecture team customizes the common data model with local requirements.

Components for production are generated by the integration team, re-tested and passed to the operations team for deployment.

Operations Team deploys Components in the production environment.

- Stateless for scalability
- Runs in any Java container
- Connects to any bus

Continuous Testing

Common Data Model

Centralized Data Model

Enterprise Semantic Model

Local requirements

Information Architecture

Integration Team

Testing

Centralized Mapping, Design

DXSI

ESB

Schema

Continuous Testing

GET IN THE FLOW

http://www.distributech.com
Key Take-Away Points

• Innovative Integration approach with benefits of
 – Plug and Play for systems and BI applications
 – Benefits of automation for integration, testing, maintenance, updates
 – Lower Life Cycle Cost and more effective system deployments

• Model-driven approach that leverages Industry Standards (CIM) and interoperability

• Scalable (Structured, planned, model-driven approach)

• Semantic understanding is guaranteed (explicit, not implicit);
 – availability of strongly typed syntactical interfaces is not a requirement for success any more

• Easier updating and tracking of standards development
Thank You

• Predrag Vujovic
 – pvujovic@lipower.org
• Phillip Jones
 – pjones@xtensible.net
• Stipe Fustar
 – sfustar@powergrid360.com
• Fran Clark, Arpeggio Technology
 – franclark@comcast.net